
Tutorial class 6/4

1 Series of real numbers

Example 1.1. Find the value of a such that the series

∞∑
k=1

(
1

n
− sin

1

n

)a

exists.

Proof. Consider f(x) = sinx on [0, 1]. By Taylor’s theorem, for x > 0, there exists η ∈ (0, x)

such that

sinx = f(x) =

3∑
k=0

f (k)(0)

k!
xk +

f4(η)

4!
x4 = x− x3

3!
+
x4

4!
sin η.

Therefore,

lim
x→0

x− sinx

x3
=

1

6
.

Thus, there exists δ > 0 such that for all 0 < x < δ,

1

8
x3 ≤ x− sinx ≤ 1

2
x3.

Hence by comparison test, the series exists if and only if a > 1/3.

2 Series of functions

Definition 2.1. We say that
∑∞

k=1 fk(x) converge if for each x0 ∈ A, the series of real

number
∑∞

k=1 fk(x0) converge.

It converges uniformly if its partial sum converge uniformly on A as a sequence of function.

(Cauchy Criterion) Equivalently, that is to say ∀ε > 0, there exists N ∈ N such that for all

m,n > N , for all x ∈ A, ∣∣∣ m∑
k=n

fk(x)
∣∣∣ < ε.

One may need to discuss the continuity of limit functions.

Example 2.2. f(x) =

∞∑
n=1

cos(3nx)

2n
is a well defined continuous function on R.

Proof. Since cos(3nx)
2n ≤ 1

2n for all n ∈ N, by comparison test, f(x) exists for all x ∈ R.

In order to show the continuity, we may need to show that the convergence is uniform.

(Uniform convergence preserves the continuity.) The uniform convergence is immediate

from the the control of 2−n. Hence it is continuous.
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Remarks: Noted that uniform convergence is global, while continuity is local.

Therefore, the uniform convergence assumption is probably overuse. See the

example below.

Example 2.3. f(x) =
∑∞

n=1
enx

n! is a continuous function, but the convergence is non-

uniform.

Proof. For each x ∈ R, by ratio test

e(n+1)x

(n+ 1)!
· n!

e(n+1)x
=

ex

n+ 1
→ 0 as n→∞.

Hence f(x) is well defined. To show the continuity, it suffices to prove that f is continuous

at c ∈ R, where c is arbitrarily chosen from the real line.

Let c ∈ R, c ∈ [−M,M ] where M >> c or −M << c. Therefore it suffices to show that the

convergence is uniform on [−M,M ].

Let ε > 0, there exists N such that for all m,n > N ,

|
m∑

k=n

ekx

k!
| ≤

m∑
k=n

ekM

k!
< ε.

The first inequality hold whenever x ∈ [−M,M ] while the second one can be deduced from

the convergence of such series. So f is continuous on [−M,M ], in particular at c.

To show the non-uniform issue, one observe that ekx

k! does not converge to 0 uniformly.

It can be shown by picking xk = k for integer k. Then

ekxk

k!
=
ek

2

k!
→ +∞ as k →∞.

In general, if
∑
fk converges uniformly, then fk converges to 0 uniformly since we have

fn(x) =

n∑
k=1

fk(x)−
n−1∑
k=1

fk(x) ⇒ 0.

Differentiability of the limit function is argued in a similar manner.

Example 2.4. F (x) =

∞∑
n=1

n10

xn
is differentiable on (1,∞).

Proof. By the theory in sequence of functions, it suffices to show that
∑∞

n=1
n10

xn converges

for some x0 and also
∑∞

n=1
n11

xn+1 converge uniformly around a fixed point c where c is

arbitrarily chosen in (1,∞). The argument is completely the same as before. We leave it to

the reader.
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