## Tutorial class 6/4

## 1 Series of real numbers

Example 1.1. Find the value of a such that the series

$$
\sum_{k=1}^{\infty}\left(\frac{1}{n}-\sin \frac{1}{n}\right)^{a} \quad \text { exists. }
$$

Proof. Consider $f(x)=\sin x$ on $[0,1]$. By Taylor's theorem, for $x>0$, there exists $\eta \in(0, x)$ such that

$$
\sin x=f(x)=\sum_{k=0}^{3} \frac{f^{(k)}(0)}{k!} x^{k}+\frac{f^{4}(\eta)}{4!} x^{4}=x-\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \sin \eta
$$

Therefore,

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\frac{1}{6}
$$

Thus, there exists $\delta>0$ such that for all $0<x<\delta$,

$$
\frac{1}{8} x^{3} \leq x-\sin x \leq \frac{1}{2} x^{3}
$$

Hence by comparison test, the series exists if and only if $a>1 / 3$.

## 2 Series of functions

Definition 2.1. We say that $\sum_{k=1}^{\infty} f_{k}(x)$ converge if for each $x_{0} \in A$, the series of real number $\sum_{k=1}^{\infty} f_{k}\left(x_{0}\right)$ converge.
It converges uniformly if its partial sum converge uniformly on $A$ as a sequence of function.
(Cauchy Criterion) Equivalently, that is to say $\forall \epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $m, n>N$, for all $x \in A$,

$$
\left|\sum_{k=n}^{m} f_{k}(x)\right|<\epsilon
$$

One may need to discuss the continuity of limit functions.
Example 2.2. $f(x)=\sum_{n=1}^{\infty} \frac{\cos \left(3^{n} x\right)}{2^{n}}$ is a well defined continuous function on $\mathbb{R}$.
Proof. Since $\frac{\cos \left(3^{n} x\right)}{2^{n}} \leq \frac{1}{2^{n}}$ for all $n \in \mathbb{N}$, by comparison test, $f(x)$ exists for all $x \in \mathbb{R}$. In order to show the continuity, we may need to show that the convergence is uniform. (Uniform convergence preserves the continuity.) The uniform convergence is immediate from the the control of $2^{-n}$. Hence it is continuous.

Remarks: Noted that uniform convergence is global, while continuity is local. Therefore, the uniform convergence assumption is probably overuse. See the example below.

Example 2.3. $f(x)=\sum_{n=1}^{\infty} \frac{e^{n x}}{n!}$ is a continuous function, but the convergence is nonuniform.

Proof. For each $x \in \mathbb{R}$, by ratio test

$$
\frac{e^{(n+1) x}}{(n+1)!} \cdot \frac{n!}{e^{(n+1) x}}=\frac{e^{x}}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence $f(x)$ is well defined. To show the continuity, it suffices to prove that $f$ is continuous at $c \in \mathbb{R}$, where $c$ is arbitrarily chosen from the real line.
Let $c \in \mathbb{R}, c \in[-M, M]$ where $M \gg c$ or $-M \ll c$. Therefore it suffices to show that the convergence is uniform on $[-M, M]$.
Let $\epsilon>0$, there exists $N$ such that for all $m, n>N$,

$$
\left|\sum_{k=n}^{m} \frac{e^{k x}}{k!}\right| \leq \sum_{k=n}^{m} \frac{e^{k M}}{k!}<\epsilon
$$

The first inequality hold whenever $x \in[-M, M]$ while the second one can be deduced from the convergence of such series. So $f$ is continuous on $[-M, M]$, in particular at $c$.

To show the non-uniform issue, one observe that $\frac{e^{k x}}{k!}$ does not converge to 0 uniformly. It can be shown by picking $x_{k}=k$ for integer $k$. Then

$$
\frac{e^{k x_{k}}}{k!}=\frac{e^{k^{2}}}{k!} \rightarrow+\infty \quad \text { as } k \rightarrow \infty
$$

In general, if $\sum f_{k}$ converges uniformly, then $f_{k}$ converges to 0 uniformly since we have

$$
f_{n}(x)=\sum_{k=1}^{n} f_{k}(x)-\sum_{k=1}^{n-1} f_{k}(x) \rightrightarrows 0
$$

Differentiability of the limit function is argued in a similar manner.
Example 2.4. $F(x)=\sum_{n=1}^{\infty} \frac{n^{10}}{x^{n}}$ is differentiable on $(1, \infty)$.
Proof. By the theory in sequence of functions, it suffices to show that $\sum_{n=1}^{\infty} \frac{n^{10}}{x^{n}}$ converges for some $x_{0}$ and also $\sum_{n=1}^{\infty} \frac{n^{11}}{x^{n+1}}$ converge uniformly around a fixed point $c$ where $c$ is arbitrarily chosen in $(1, \infty)$. The argument is completely the same as before. We leave it to the reader.

